

Vernetzung von Produktionsprozessen durch individuelle Softwaremodule

20.03.2019 | Peter Röwekamp

Gründung 2002

Georg Senft & Peter Röwekamp

Geschäftsfeld

Individualsoftware Schnittstellenentwicklung SPS-Programmierung / HMI

Standort

Stromberg (Stadt Oelde)

Branchen

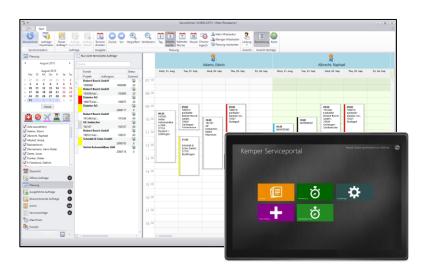
Maschinenbau Erneuerbare Energien Energieversorger Lebensmittelindustrie Handel & Logistik

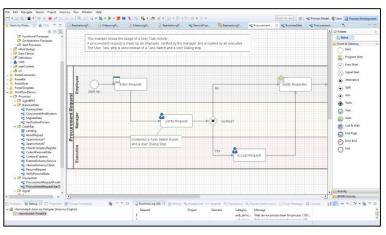
Team

6 Entwickler/innen 1 Servicetechniker

Projekte

Prozessdatenauswertung & Alarmierung Erneuerbare Energien


Servicetechniker-Einsatzplanung Maschinenbau



HMI und SPS für Fensterprofilbearbeitung Maschinenbau

Workflow-Management Energieversorgung

Herausforderungen

DIGITALISIERUNG

INDUSTRIE 4.0 **CLOUD BIG DATA** AUGMENTED REALITY
INTERNET OF **THINGS**PREDICTIVE MAINTENANCE
KÜNSTLICHE INTELLIGENZ

Zielgruppe

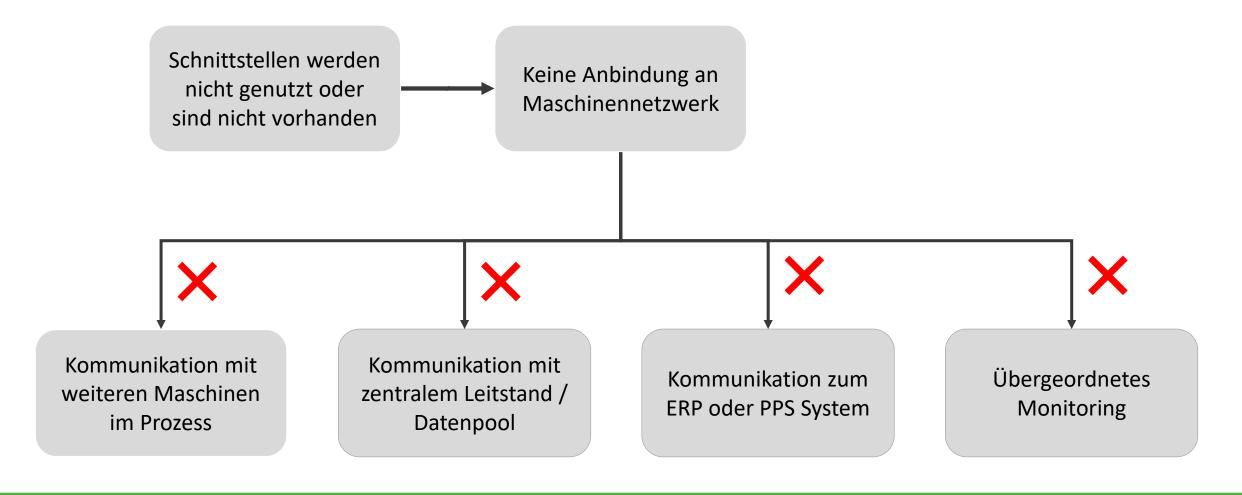
Kleine- und mittlere Unternehmen heterogene Produktionsumgebung

Einsparung von Ressourcen

Optimierung der Produktionsabläufe

Steigerung der Produktionseffizienz

Kommunikation ermöglichen Datenbrüchen vermeiden


Maschinendaten erfassen und auswerten

Vernetzung von Produktionsanlagen

Auswirkungen fehlender Vernetzung

Lösungsansätze

Neuanschaffung

Vorteile:

- Produktionsmaschinen auf technisch aktuellem Stand
- Vernetzungsmöglichkeiten vielfältig und ab Werk verfügbar
- Höhere Produktionsleistung / niedrigerer Energieverbrauch

Nachteile:

- Hohe Investitionskosten
- Ausfallzeiten durch Umbauphase

Modernisierung / Retrofit

Vorteile:

- Geringe Investitionskosten
- Nutzung der vorhandenen Produktionsanlagen
- Keine längeren Ausfallzeiten
- Ressourcen werden geschont

Nachteile:

- Integrationsgrad abhängig von der Beschaffenheit der Maschinen
- Integration je nach Prozess teilweise komplex

Unser Ansatz: Modernisierung / Retrofit

Ganzheitliche Betrachtung des Produktionsprozesses

Priorisierung der identifizierten Problemfelder Erkennung von Datenbrüchen

Identifikation vorhandener Schnittstellen / Anbindungsmöglichkeiten

Analyse der Produktionsanlagen Bewertung des Implementierungsaufwands

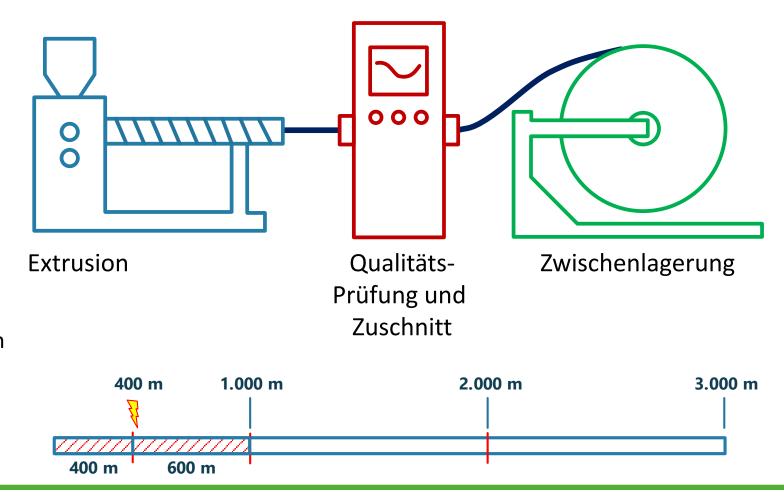
Entwicklung von individuellen Softwaremodulen

Implementierung angepasster Schnittstellen Einbindung erforderlicher Schnittstellenhardware

Schaffung oder Nutzung einer zentralen Kontroll- und Steuerungsinstanz

Implementierung einer individuellen zentralen Instanz Nutzung vorhandener oder geeigneter Leitsysteme

Fallbeispiel Kunststoffrohr-Produktion

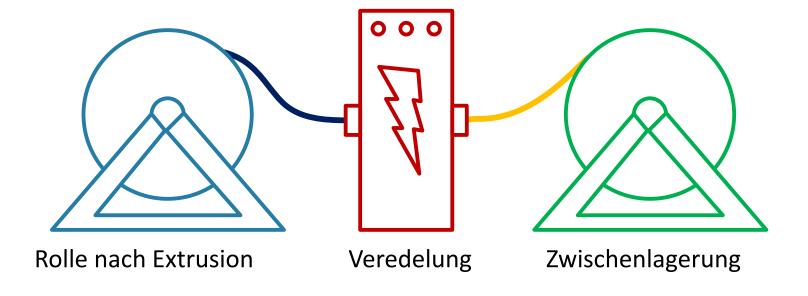


Ablauf:

- Extrusion des Kunststoffrohrs
- Prüfung der Wanddicke
- Markierung bei Abweichung
- Lagerung auf Rolle
- Produktion einer definierten Länge
- Manuelle Übertragung der Fehler-Position auf Laufkarte

Probleme:

- Längen-Position bei Qualitätsproblem wird nicht weitergegeben
- Keine Verlängerung der Produktion um Restlängen zu verwerten

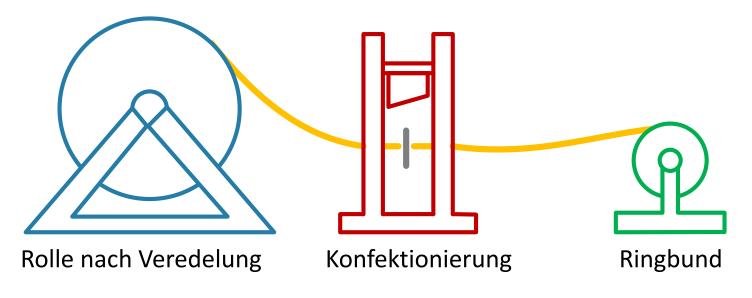


Ablauf:

- Veredelung des extrudierten Kunststoffrohrs
- Prüfung auf Leckagen
- Markierung von Leckagen
- Manuelle Übertragung der Fehler-Position auf Laufkarte

Probleme:

- Fehlerstellen aus vorherigem Schritt werden veredelt
- Nach Veredelung nur aufwändige Entsorgung möglich
- Fehleranfälligkeit durch manuellen Eintrag auf Laufkarte



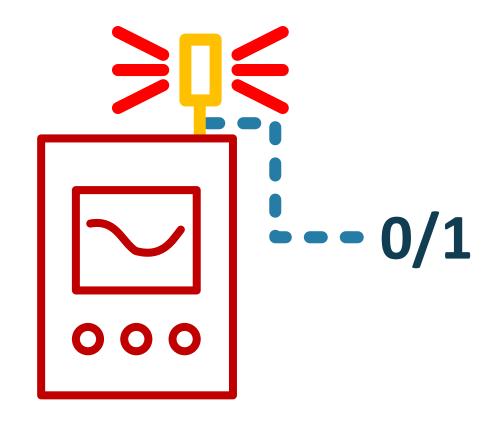
Ablauf:

- Konfektionierung des veredelten Kunststoffrohrs
- Manuelle Entfernung von Fehlerstellen
- Ablängung auf vorgegebene Ringbundlänge

Probleme:

- Aufwändiges Suchen und Entfernen der Fehlerstellen
- Manuelle Auswertung der Laufkarte
- Ausschuss durch Restlängen, welche kürzer als die vorgegebene Ringbundlänge sind

Integrationsmöglichkeiten



Integration auf Basis von I/O Anschlüssen

- Anbindung von digitalen und analogen Signalen
- Kommunikation ist synchron und teilw. bidirektional
- Erfassung und Bereitstellung von Signalen durch zusätzliche, **programmierbare Hardware**
- **Digital** (z.B. Fehlerzustand, Stückzähler)
- Analog (z.B. Temperatur, Druck, Messwert allgemein)

Beispiele:

- Fehlerzustand über Anbindung einer vorhandenen Warnleuchte abfragen
- Anbindung eines Zählers (Strom, Wasser etc.) über SO-Schnittstelle

Integration durch Dateien und Datenbanken

Dateien

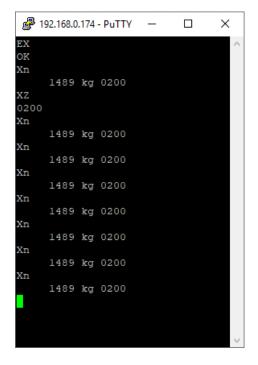
- Import und Export von Dateien aus der Steuerung
- Kommunikation ist asynchron, selten bidirektional
- Bereitstellung z.B. über FTP-Server

Datenbanken

- Anbindung einer Maschinen-Datenbank (z.B. SQL)
- Datenbank oftmals auf Visualisierungs-PC

Beispiele:

- Download von protokollierten Prozessdaten
- Upload von Rezeptinformationen



Anlage1;1471604997;19.08.2018 11:09:57;Druck;9;1,5 Anlage1;1471605006;19.08.2016 11:10:06;02;1;0,3 Anlage1;1471605006;19.08.2016 11:10:06;CH4;3;50,39 Anlage1;1471605006;19.08.2016 11:10:06;H2S;4;135 Anlage1;1471605057;19.08.2018 11:10:57;Gasmenge;10;1909467

Integration auf Protokoll-Ebene (proprietär)

- Anbindung meist über TCP, RS232 oder RS485
- Kommunikation ist synchron und teilw. bidirektional
- Befehle und Datenformat müssen bekannt sein

Wägeterminal IT1 – SysTec GmbH

Beispiele:

- Anbindung eines Wäge-Terminals
- Kommunikation mit RFID-Kartenleser

Integration auf Protokoll-Ebene (standardisiert)

- Kommunikation ist synchron und bidirektional
- Integration teilweise ohne zusätzliche Hardware möglich
- Anbindung von **proprietären** Protokollen über **Gateways**
- Protokollverarbeitung ist standardisiert
- Adressen der Datenfelder müssen in vielen Fällen bekannt sein
- **OPC UA** bietet durchsuchbaren Server, Adressierung der Datenfelder muss nicht bekannt sein.

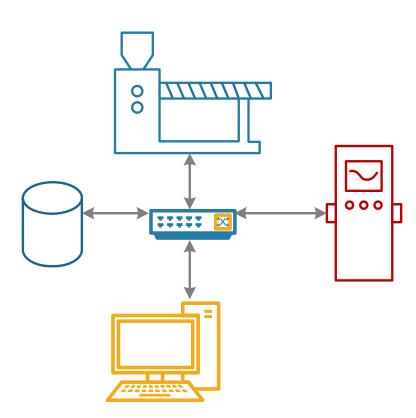
Beispiele:

- Direkte Kommunikation zwischen zwei SPS-Steuerungen
- Nutzung durch den Hersteller freigegebener Protokolle

Integration auf Präsentations-Ebene

- Interaktion mit Bedienoberflächen
- Kommunikation ist synchron (langer Zyklus) und teilw. bidirektional
- Technisch bei Web-HMIs möglich (HTML Seite auslesen)
- Letzte Option, da nicht standardisiert und Funktionen durch Layout-Änderungen beeinträchtigt werden können
- Nicht für kritische Anbindungen geeignet

Beispiele:


Auswertung Wechselrichter für Solaranlage

Integrationsplattform nach Bedarf

- Cloud-Lösung oder großer Leitstand nicht immer notwendig
- Anwendungsfall und Umfeld entscheiden über passende Lösung
- Mögliche Implementierungen der Integrationsplattform
 - Übergeordnete SPS-Steuerung (Logik, Schnittstellen, Visualisierung)
 - Zentrale Datenbank
 - Zentrale Webanwendung
 - Zentrale Windows-Server / Desktop Anwendung
- Implementierung der Schnittstellenmodule
 - **Zentral** über eine oder mehrere spezielle Anwendungen
 - Dezentral über Hardware direkt an der Maschine (PC, SPS etc.)

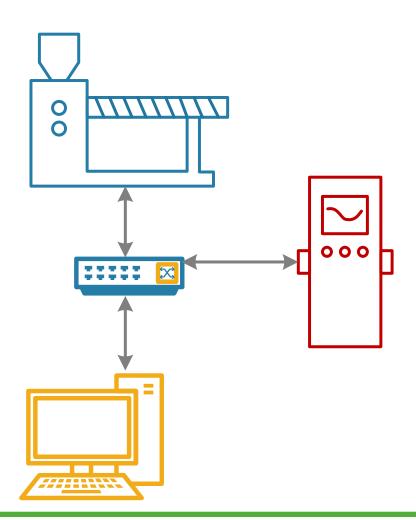
Schnittstellen-Analyse erforderlich

Ziel

Vorhandene Schnittstellen identifizieren und nutzen

Gespräch mit Maschinenhersteller

Welche Schnittstellen können kostengünstig ergänzt werden?

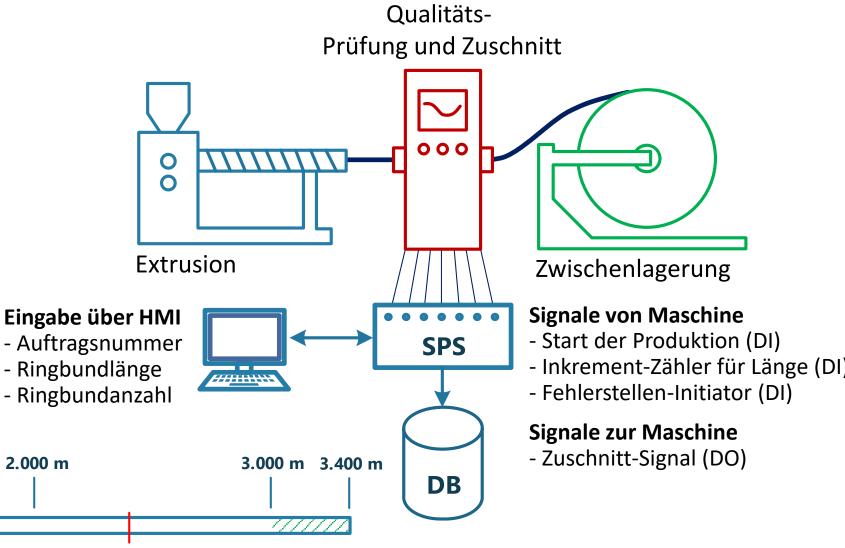

Software passt sich der Maschine an

Änderungen in Standardmaschinen oft teuer oder unflexibel

Eignung der Schnittstelle für Anwendungsfall prüfen

Kritische Prozesse erfordern sichere Protokolle
Zusatzfeatures können auch über unkonventionelle
Wege angebunden werden

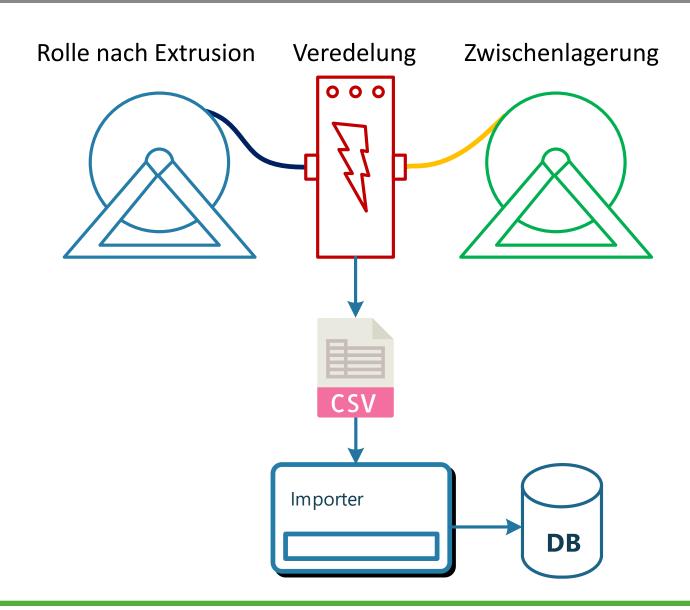
Fallbeispiel Kunststoffrohr-Produktion


Elektrische Anbindung

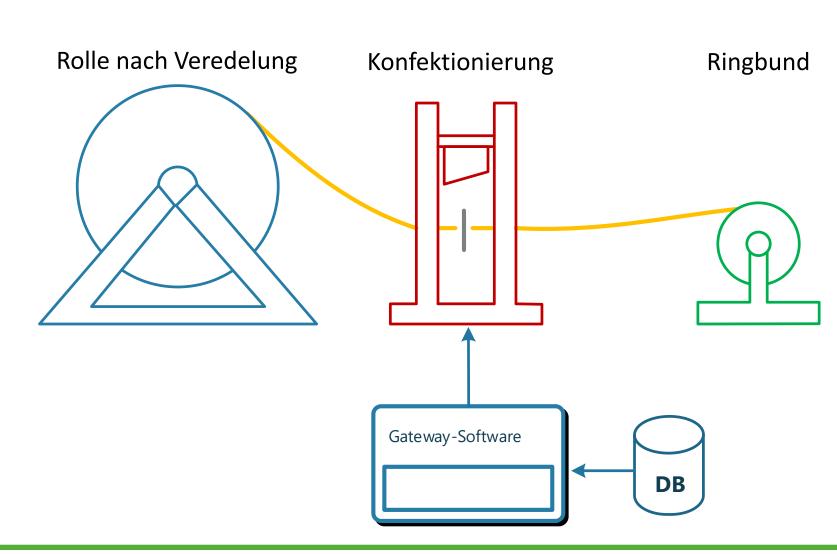
- SPS f
 ür elektrische Anbindung
- Bedienung über kleines HMI
- Zuschnitt nach Algorithmus, um Verschnitt zu verringern

1.000 m

 Korrekte Übergabe der produzierten Länge


400 m

Anbindung Dateiexport


- Export der Leckage-Stellen über CSV-Datei
- Einlesen der CSV-Datei in kleine Software-Komponente
- Zuweisung der ermittelten Leckage-Stellen zum Produktionsauftrag
- Auslassung ganzer Teilstücke evtl. in Zukunft

Anbindung Modbus-TCP

- Übergabe der Fehlerstellen mit Positionsinformation aus Datenbank an Konfektionierung
- Übergabe der tatsächlichen Länge auf Rolle
- Übergabe von Zwischenlängen, welche direkt entsorgt werden können

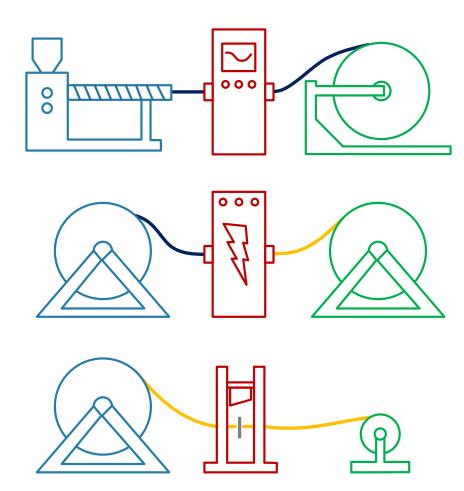
Ergebnis

Zentrale Datenhaltung über alle Stationen des Produktionsprozesses

Implementierung einer digitalen Lauf- und Bewertungskarte

Vermeidung von Fehlern bei der manuellen Übergabe von Fehlerstellen-Informationen

Entlastung der Mitarbeiter


Reduktion des Ausschusses durch Optimierung der Rohrlänge auf der Rolle

Reduzierte Entsorgung von Restlängen nötig

Schnellere Konfektionierung durch automatische Übergabe der Fehlerstellen

Massive Zeitersparnis gegenüber manuellem Suchvorgang

Zusammenfassung

Große Wirkung auch mit kleineren Lösungen

Gesamter Prozess oder nur Einzelprobleme Einsparungen oft durch einfache Lösungen groß

Vielfalt an Möglichkeiten sollte genutzt werden

Vorhandene Schnittstellen nutzen Neue Schnittstellen erschaffen

Vernetzung von Bestandsmaschinen als erster Schritt

Anbindung von Cloud-Lösungen Aufsetzen weiterer Dienste (BigData, KI etc.)

Beratungsleistung für Konzept und Schnittstellenanalyse über EFA förderbar

Ressourceneffizienz durch Vernetzung

Vielen Dank für Ihre Aufmerksamkeit!

Peter Röwekamp

callison GmbH Ludwig-Erhard-Allee 11 59302 Oelde

+49 2529 9479310 roewekamp@callison.de www.callison.de